
Common Graphs
Samuel Li

Overview

x 7→ ax + b

cx + d

x 7→ ax

x 7→ loga x

Note that x 7→ x2 is shorthand for f(x) = x2.

Möbius Transformations

Möbius transformations are a special type of rational function.

x 7→ ax + b

cx + d

For a shorthand, I’ll sometimes denote this function by the matrix:[
a b
c d

]
For example, the following four notations denote the same rational function:

f(x) =
3x + 5

2x− 4

x 7→ 3x + 5

2x− 4[
3 5
2 −4

]
[
6 10
4 −8

]

Special Cases

If c = 0, the function is linear.

Note that if ax + b is actually a multiple of cx + d, then the function is a
constant. In other words, if a

c = b
d . This can be rearranged to ad− bc = 0.

We will exclude these special cases because they are useless trivial.

Intercepts

The y-intercept is at (0, b
d). The x-intercept is at (0,− b

a).

Limiting Behavior

Note that when x = −d
c , the denominator is zero. This corresponds to a

vertical asymptote at x = −d
c .

Note that:

lim
x→∞

ax + b

cx + d
= lim

x→∞

a + b
x

c + d
x

=
a + limx→∞

b
x

c + limx→∞
d
x

=
a

c

The same result is obtained when x→ −∞, so the function has one horizontal
asymptote at y = a

c .

Example
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v What is the equation of the horizontal asymptote?

v What is the equation of the vertical asymptote?

v What is the x-intercept?

v What is the y-intercept?

Assume that a = 1. From this, you should be able to deduce b, c, and d. The
transformation shown above is:

x 7→ x + �
�x + �

One True Hyperbola

In the above example, we note that the vertical asymptote is x = 2 and the
horizontal asymptote is y = 1. What would happen if we shifted the graph
so these asymptotes lined up with the coordinate axes?

We start with the original transformation shown in the example.

f(x) =
x + 2

x− 2

We shift the graph 2 units left and 1 unit down.

f(x + 2)− 1 =
(x + 2) + 2

(x + 2)− 2
− 1

=
x + 4

x
− 1

=
4

x

It turns out that our Möbius transformation f is simply the hyperbola x 7→ 1
x ,

vertically scaled by 4 and shifted by 〈2, 1〉.

In fact, all Möbius transformations can be written in this way. We start with
an arbitrary Möbius transformation.

f(x) =
ax + b

cx + d

We note that the vertical asymptote is x = −d
c and the horizontal asymptote

is y = a
c . We shift the graph d

c units right and a
c units down.

f

(
x− d

c

)
− a

c
=

a(x− d
c ) + b

c(x− d
c ) + d

− a

c

=
a(cx− d) + bc

c2(x− d
c ) + dc

− a

c

=
acx− ad + bc

c2x
− acx

c2x

= −ad− bc

c2
1

x

Therefore, any Möbius transformation is simply the graph of x 7→ 1
x , vertically

scaled by −ad−bc
c2

and shifted by 〈−d
c ,

a
c 〉. In other words, any such rational

function is a shifted and scaled version of the well-known hyperbola x 7→ 1
x .

There is one true hyperbola.

How to Graph a Möbius Transformation

1. Draw and label the axes.

2. Check if the transformation falls into a useless trivial case.

3. Draw the vertical asymptote at x = −d
c .

4. Draw the horizontal asymptote at y = a
c .

5. Plot the x-intercept at (− b
a , 0).

6. Plot the y-intercept at (0, b
d).

7. Draw a scaled, translated copy of x 7→ 1
x that has the correct asymptotes

and passes through the correct intercepts.

Properties

All nontrivial Möbius transformations:

v are one-to-one

v are invertible

v are monotonic

v have one vertical and one horizontal asymptote

v are transformed copies of x 7→ 1
x

Monotonicity

The graph of the above example occupies quadrants I and III when the
asymptotes are shifted to match the axes; this is equivalent to the property
that the graph is everywhere downwards sloping. Some graphs of Möbius
transformations, such as x 7→ − 1

x , are always upward sloping and occupy
quadrants II and IV relative to the asymptotes.

How can we decide whether a transformation is upward or downwards sloping?
Take the derivative, of course.

d

dx

ax + b

cx + d
=

a(cx + d)− c(ax + b)

(cx + d)2

=
acx + ad− acx− bc

(cx + d)2

=
ad− bc

(cx + d)2

In other words, the graph is upwards sloping precisely when ad− bc > 0, and
vice-versa.

Function Composition

Define the transformations:

f(x) :=
3x + 5

2x− 4

g(x) :=
6x− 1

−x + 5

What is (g ◦ f)(x) := g(f(x))?

g(f(x)) =
6f(x)− 1

−f(x) + 5

=
63x+5
2x−4 − 1

−3x+5
2x−4 + 5

=
6(3x + 5)− (2x− 4)

−(3x + 5) + 5(2x− 4)

=
18x + 30− 2x + 4

−3x− 5 + 10x− 20

=
16x + 34

7x− 25

Alternatively,

[
6 −1
−1 5

] [
3 5
2 −4

]
=

[
16 34
7 −25

]
6x− 1

−x + 5
◦ 3x + 5

2x− 4
=

16x + 34

7x− 25

For second semester — there is a group isomorphism between the group of
non-constant Möbius transformations under function composition and the
projective linear group of 2× 2 matrices.

For Fun

https://www.desmos.com/calculator/iuog2hqff8

Exponential Functions

x 7→ ax

We will (mostly) study the case when a > 0.

Degenerate Cases

If a = 1, then the function is constant. From now on, we will assume that
a 6= 1.

Intercepts

Exponential functions where a > 0 are always positive, and so have no x-
intercepts. All exponentials pass through the point (0, 1), and so have one
y-intercept.

Limiting Behavior

If a > 1, we have that ax →∞ as x→∞, and ax → 0 as x→ −∞. If a < 1,
these behaviors are reversed. Therefore, the exponential function always has
exactly one horizontal asymptote at y = 0.

Monotonicity

Suppose that x2 > x1. If a > 0, then ax2 > ax1 , so the graph is always
increasing; if a < 0, the graph is always decreasing. In fact, we can show
that the derivative of an exponential is proportional to itself:

d

dx
ax = lim

h→0

ax+h − ax

h

= lim
h→0

ax(ah − 1)

h

= ax lim
h→0

ah − 1

h

If we let C := limh→0
ah−1
h , it follows that d

dxa
x = Cax. If we set x = 0 in

Cax, it follows that C is the derivative of ax at x = 0. We define the number
e so that C = 1 when a = e.

Since ax > 0 for all x, it follows that its derivative must be always positive
or always negative, depending on the sign of C. This implies that ax is
one-to-one and invertible.

Duality

Every law of exponents corresponds to a property of an exponential
graph.

In the following examples, we will define fa(x) := ax.

Consider the exponent law am+n = aman. If we take n = x, we have that
fa(x + m) = am+x = amax = amfa(x). In other words, a left shift of an
exponential graph is equivalent to a vertical stretch (and vice-versa).
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If we take amn = (am)n with n = x, we find that fa(mx) = amx = (am)x =
fam(x). A horizontal compression is equivalent to a change of base.
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Similar relationships hold for all the other laws of exponents.

In particular, the relationship between horizontal scaling and change of base
means that all exponential graphs are scaled versions of other exponential
graphs. There is one true exponential.

Properties

All nontrivial exponentials:

v pass through (0, 1)

v have no x-intercepts

v are one-to-one

v are invertible

v are monotonic

v have one horizontal asymptote

v are scaled copies of each other

For Fun

https://www.desmos.com/calculator/ccz1puood4

Logarithmic Functions

x 7→ loga x

Logarithms are the inverse of exponential functions. Therefore, most prop-
erties of exponentials (including duality) translate directly to those of log-
arithms. We will again consider only a > 0. If a = 1, the logarithm is
undefined.
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Properties

Directly translating the properties of exponentials into properties of loga-
rithms, all nontrivial logarithms:

v pass through (1, 0)

v have no y-intercepts

v are one-to-one

v are invertible

v are monotonic

v have one vertical asymptote

v are scaled copies of each other

By duality (or laws of logarithms), we have that:

v vertical shifting is equivalent to horizontal stretching

v vertical scaling is equivalent to change of base

Monotonicity

Since exponentials are monotonic, logarithms are monotonic. However, we
lose the property that exponentials are multiples of their own derivative. We
can find the derivative:

d

dx
loga x = lim

h→0

loga(x + h)− loga(x)

h

= lim
h→0

loga(x+h
x )

h

= lim
t→∞

t

x
loga

(
1 +

1

t

)
(Defining t := x

h)

=
1

x
lim
t→∞

t loga

(
1 +

1

t

)
=

1

x
lim
t→∞

loga

([
1 +

1

t

]t)

=
1

x
loga

(
lim
t→∞

[
1 +

1

t

]t)
(Since loga x is continuous)

Similar to the exponential case, we define C := limt→∞
(
1 + 1

t

)t
and obtain

d
dx loga x = loga C

x . It turns out that C = e.

Although the derivative has the same monotonicity property as that of expo-
nentials, the derivative is not a multiple as its parent function. Rather than
an exponential, the derivative of a logarithm is a Möbius transformation.

https://www.desmos.com/calculator/iuog2hqff8
https://www.desmos.com/calculator/ccz1puood4

