NOTATION

STATEMENTS

We use P_n to denote a statement. The statement should depend on n to avoid wasting the valuable subscript. For example, if we define: $P_n :=$ There are n lights.

Then, we would have:

 P_2 = There are 2 lights. P_7 = There are 7 lights. P_{126} = There are 126 lights.

For another example, if we define:

 $P_n := n^2 + n$ is even.

Then, we would have:

 $P_1 = 1^2 + 1$ is even. $P_8 = 8^2 + 8$ is even. $P_{911} = 911^2 + 911$ is even.

INDUCTIVE CLAIMS

We use I_n to denote an inductive claim. An inductive claim I_n says that if P_n is true, then P_{n+1} must be true. In other words, we define: $I_n := (P_n \implies P_{n+1}).$

$$I_n := (P_n)$$

For example, suppose we define: $P_n := n^3 \text{ is prime}.$

Then, we would have:

 $I_2 = \text{If } 2^3 \text{ is prime, then } 3^3 \text{ is prime.}$ $I_{12} = \text{If } 12^3 \text{ is prime, then } 13^3 \text{ is prime.}$ $I_{42} = \text{If } 42^3 \text{ is prime, then } 42^3 \text{ is prime.}$

 $_{42} = 11.42$ is prime, then 42 is prime

The Principle of Mathematical Induction

The Principle of Mathematical Induction (PMI) says that if P_1 is true, and I_n is true for all natural numbers n, then P_n is true for all natural numbers n. In other words, we have that:

 $[P_1 \text{ and } (I_n \text{ for all } n \in \mathbb{N})] \implies (P_n \text{ for all } n \in \mathbb{N})$

Or, more succinctly,

 $P_1 \wedge (I_n \forall n \in \mathbb{N}) \implies (P_n \forall n \in \mathbb{N})$

To see why this is true, let us consider:

- $P_n := n > 0$
- ★ The PMI requires that we have P_1 . In other words, we must assume that 1 > 0.
- ♦ We also assume that we have proved I_1 . In other words, we have that if 1 > 0, then 2 > 0.
- Clearly, it follows that 2 > 0. In other words, we have proved P_2 from P_1 and I_1 .

We can repeat this reasoning for P_2 and I_2 to obtain P_3 , and so on. The statement P_1 is called the *base case*, and proving the inductive claim I_n for all $n \in \mathbb{N}$ is called the *inductive step*.

EXAMPLES

SUMS OF ODD NUMBERS

Note that:

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

$$1 + 3 + 5 + 7 + 11 = 25$$

It appears that the sum of the first n odd numbers is equal to n^2 . We want to prove this. **Theorem 1.** The sum of the first n odd numbers is equal to n^2 for all $n \in \mathbb{N}$. *Proof.* ???????????????????????????????????

:

We will prove this by induction; however, we must first formalize the problem. We do this by defining:

 $P_n :=$ The sum of the first n odd numbers is equal to n^2 . The problem has now been transformed into proving P_n for all $n \in \mathbb{N}$. **Theorem 2.** P_n is true for all $n \in \mathbb{N}$.

This presentation is on induction, so we will clearly use induction to prove P_n . The PMI says that we only need to prove P_1 and I_n . Lemma 3. P_1 is true.

Proof. Substituting n = 1 into the definition of P_1 yields:

 P_1 = The sum of the first 1 odd numbers is equal to 1^2 .

In other words,

 P_1 = The first odd number is 1. This is true by the "duh of course" principle.

We have proved that P_1 is true. We now need to prove that I_n is true for any n.

Lemma 4. I_n is true for all $n \in \mathbb{N}$.

It might help to substitute the definitions of I_n and P_n : Lemma 5. If the sum of the first n odd numbers is n^2 , then the sum of the first n + 1 odd numbers is $(n + 1)^2$.

It might also help to actually know what the first n odd numbers are. The first odd number is $1 \times 2 - 1 = 1$. The second odd number is $2 \times 2 - 1 = 3$. The third odd number is $3 \times 2 - 1 = 5$. It appears that the n^{th} odd number is 2n - 1. We can prove this by induction but I'm too lazy. It follows that the sum of the first n odd numbers is the sum of the numbers 2k - 1, where k goes from 1 to n. Lemma 6. If the sum of the numbers 2k - 1, where k goes from 1 to n, is

 n^2 , then the sum of the numbers 2k - 1, where k goes from 1 to n + 1, is $(n + 1)^2$.

This is too wordy, so let's use more symbols.

Lemma 7. If

then

then

$$\sum_{k=1}^{n} (2k-1) = n^2,$$

$$\sum_{k=1}^{n+1} (2k-1) = (n+1)^2$$

We're getting somewhere (hopefully). Actually, why don't we try to prove it now (maybe?). Lemma 8. If

If

$$\sum_{k=1}^{n} (2k-1) = n^2,$$

$$\sum_{k=1}^{n+1} (2k-1) = (n+1)^2$$

Proof. We know that:

$$\sum_{k=1}^{n} (2k - 1) = n^2.$$

We want to end up with $\sum_{k=1}^{n+1} (2k-1)$ on the left. This is the same sum but with a 2(n+1) - 1 added. Let's add 2(n+1) - 1 to both sides.

$$\sum_{k=1}^{n} (2k-1) = n^2$$

$$\sum_{k=1}^{n} (2k-1) + 2(n+1) - 1 = n^2 + 2(n+1) - 1$$

$$\sum_{k=1}^{n+1} (2k-1) = n^2 + 2n + 2 - 1$$

$$\sum_{k=1}^{n+1} (2k-1) = (n+1)^2$$

We got what we wanted assuming only what we were given, so I'd call that a proof.

We've managed to prove both P_1 and I_n . PMI tells us that this proves P_n as well, so we're done. Here's the full proof, for reference.

Theorem 9. The sum of the first n odd numbers is equal to n^2 for all $n \in \mathbb{N}$. *Proof.* We will use the Principle of Mathematical Induction.

Base Case The sum of the first 1 odd numbers equals 1^2 . The claim holds. Inductive Step We will assume the claim is true for some $n \in \mathbb{N}$. Note that:

n

$$\sum_{k=1}^{n} (2k-1) = n^2$$
$$\sum_{k=1}^{n} (2k-1) + 2(n+1) - 1 = n^2 + 2(n+1) - 1$$
$$\sum_{k=1}^{n+1} (2k-1) = (n+1)^2$$

The claim holds for n + 1 as well. By PMI, the claim holds for all $n \in \mathbb{N}$.

EXPONENTIALS VERSUS FACTORIAL GROWTH Look at the following table:

n	2^n	n!
1	2	1
2	4	2
3	8	6
4	16	24
5	32	120
6	64	720
7	128	5040
8	256	40320
9	512	362880
10	1024	3628800
11	2048	39916800

It looks like n! grows faster than 2^n . In particular, it appears that $n! > 2^n$ for all $n \ge 4$. We can prove this by a modified version of PMI; we will define: $P_n := n! > 2^n$

We only need to prove P_4 and I_n for all $n \ge 4$. This will show that P_n is true for $n \ge 4$. **Theorem 10.** $n! > 2^n$ for all $n \ge 4$.

Proof. We will use the Principle of Mathematical Induction.

Base Case We have that $4! > 2^4$. The claim holds. Inductive Step We will assume the claim is true for some $n \ge 4$. Note that:

$$n! > 2^n$$

 $n! (n+1) > (n+1)2^n$

$$(n+1)! > (n+1)2$$

(n+1)! > (n+1)2ⁿ
(n+1)! > 2 × 2ⁿ

 $(n+1)! > 2 \times 2^n$ (since n+1 > 2) $(n+1)! > 2^{n+1}$

The claim holds for n + 1 as well. By PMI, the claim holds for all $n \ge 4$.

An alternative proof of the theorem is as follows: **Theorem 11.** $n! > 2^n$ for all $n \ge 4$.

<i>Proof.</i> We will use the Principle of Mathematical Induction.					
Base Case	We have that $4! > 2^4$. The claim holds.				
Inductive Step We will assume the claim is true for some $n \ge 4$. Not					
	$(n+1)! = n! (n+1) > n! \times 2 > 2^n \times 2 = 2^{n+1}$				
	The claim holds for $n + 1$ as well. By PMI, the claim holds for all $n \ge 4$.				

ALL NUMBERS IN A LIST ARE THE SAME

We will prove that given any list of n numbers, all the elements of the list are the same. **Theorem 12.** In a list of n numbers, all the numbers are the same.

Proof. We will use the Principle of Mathematical Induction.

Base Case

Inductive Step

In a list with one element, all the elements in the list are equal (since there's only one). The claim holds. We will assume the claim is true for some $n \in \mathbb{N}$. Consider any list of length n + 1.

The first n elements are all the same, by the induction hypothesis. The last n elements are also all the same. We therefore must have all n + 1 elements be the same; the claim holds for n + 1 as well. By PMI, the claim holds for all $n \in \mathbb{N}$.

DIVISIBILITY EXAMPLES

k

We will show that $4^n + 2$ is divisible by 3 for all $n \ge 0$. To formalize the problem, we will define:

 $P_n := 4^n + 2$ is divisible by 3.

What "x is divisible by 3" means is that x is equal to three times an integer, so we can rewrite P_n as follows:

 $P_n = (4^n + 2 = 3k \text{ for some } k \in \mathbb{Z}).$

Theorem 13. $4^n + 2$ is divisible by 3 for all $n \ge 0$.

Proof. We will use the Principle of Mathematical Induction.

Base Case $4^0 + 2 = 3$ is divisible by 3. The claim holds. Inductive Step We will assume the claim is true for some $n \in \mathbb{N}$. It follows that $4^n + 2 = 3k$ for some $k \in \mathbb{Z}$. Note that:

 $4^{n} + 2 = 3k$ $4 \times (4^{n} + 2) = 4 \times 3k$ $4 \times 4^{n} + 4 \times 2 = 12k$ $4^{n+1} + 8 = 12k$ $4^{n+1} + 2 = 12k - 6$

 $4^{n+1} + 2 = 3(4k - 2)$

We obtain that $4^{n+1} + 2$ is three times an integer, so it must be divisible by 3. It follows that the claim holds for n + 1as well. By PMI, the claim holds for all $n \ge 0$.

We will now present an incomplete proof for a similar fact. Should your algebra skills be up to par, you should be able to fill in any missing steps (in red). **Theorem 14.** $n^3 + 2n$ is divisible by 3 for all $n \in \mathbb{N}$.

Proof. We will use the Principle of Mathematical Induction.

Base Case	MISSING STEP				
Inductive Step	We will assume the claim is true for some $n \in \mathbb{N}$. It follows that $n^3 + 2n = 3k$ for some $k \in \mathbb{Z}$. Note that:				
	$n^3 + 2n = 3k$				

MISSING STEP $(n^3 + 3n^2 + 3n + 1) + (2n + 2) = 3 \times ???$ $(n + 1)^3 + 2(n + 1) = 3 \times ???$

We obtain that $(n+1)^3 + 2(n+1)$ is three times an integer, so it must be divisible by 3. It follows that the claim holds for n+1 as well. By PMI, the claim holds for all $n \in \mathbb{N}$.

The next example has a small caveat; instead of claiming that P_n is true for some *n* onwards, we prove the statement for all odd *n*. We use modified PMI with a base case of n = 1 and inductive claims of the form $P_n \implies P_{n+2}$. **Theorem 15.** If *n* is odd, then $(n+2)^2 - n^2$ is a multiple of 8.

Proof. We will use the Principle of Mathematical Induction.

Base Case	$(1+2)^2 - 1^2 = 8$ is divisible by 8, so the claim holds.			
Inductive Step	We will assume the claim is true for some $n \in \mathbb{N}$. It follows that $(n+2)^2 - n^2 = 8k$ for some $k \in \mathbb{Z}$. Note that:			
	$(n+2)^2 - n^2 = 8k$			
	$(n+2)^2 - n^2 + 2 \times 2(n+2) + 2^2 - 4n - 4 =$			
	$8k + 2 \times 2(n+2) + 2^2 - 4n - 4$			
	$[(n+2)^{2} + 2 \times 2(n+2) + 2^{2}] - (n^{2} + 4n + 4) = 8k + 8$			
	$[(n+2)+2]^2 - (n+2)^2 = 8(k+1)$			

We obtain that $[(n+2)+2]^2 - (n+2)^2$ is 8 times an integer, so it must be divisible by 8. It follows that the claim holds for n+2 as well. By PMI, the claim holds for all odd n.

CHECKERBOARD TILING

For any $n \in \mathbb{N}$, consider a $2^n \times 2^n$ checkerboard with one of the squares randomly removed. We will prove that it is possible to exactly cover the board with the shape below.

Theorem 16. For any $n \in \mathbb{N}$, it is possible to tile a $2^n \times 2^n$ checkerboard that has any square removed using only the above piece.

Proof. We will use the Principle of Mathematical Induction.

Base Case

For n = 1, the checkerboard is 2×2 . Clearly, if any square is removed, the remaining board is exactly the above shape, and so can be covered by one piece. The claim holds.

 $Inductive \ Step$

We will assume the claim is true for some $n \in \mathbb{N}$. Consider a checkerboard of size $2^{n+1} \times 2^{n+1}$. Divide the checkerboard into four $2^n \times 2^n$ checkerboards, as shown

checkerboard into four $2^n \times 2^n$ checkerboards, as shown below. For now, assume that the missing square is in the upper right checkerboard; the proof is similar for any other case.

For now, remove one square from each of the other $2^n \times 2^n$ checkerboard as shown below. These squares will be put back later.

Note that each of the four $2^n \times 2^n$ checkerboards has one square missing. By the induction hypothesis, each of them can be covered exactly with the pieces described. The three squares we removed can be covered with a single additional piece. This yields a covering of the whole board with the L-shaped pieces.

It follows that the claim holds for n + 1 as well. By PMI, the claim holds for all odd n.

BINOMIAL THEOREM

Before we prove the binomial theorem using induction, we will first prove a small lemma: Lemma 17 For all $n, k \in \mathbb{N}$ such that $0 \le k \le n$, we have that:

Lemma 17. For all $n, k \in \mathbb{N}$ such that $0 \le k \le n$, we have that:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Proof. Consider the row of n balls below. One of them is black, and the rest are white. Clearly, there are n - 1 white balls.

 $\bullet \circ \circ \circ \circ \circ \circ \circ$

Note the following:

• There are $\binom{n}{k}$ ways to choose k of the n balls above.

• There are $\binom{n-1}{k}$ ways to choose k of only the white balls.

♦ There are ⁿ⁻¹_{k-1} ways to choose the black ball and k - 1 of the white balls.
 The only way we can choose k balls is to either choose only white ones, or

to include the black one. Therefore, it follows that:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

-k

We can now prove the binomial theorem inductively. **Theorem 18.** For all $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^n$$

Proof. We will use the Principle of Mathematical Induction.

Base Case For n = 1, we have that:

$$\sum_{k=0}^{1} {\binom{1}{k}} a^{k} b^{1-k} = {\binom{1}{0}} a^{0} b^{1-k} + {\binom{1}{1}} a^{1} b^{1-1}$$
$$= b+a$$
$$= (a+b)^{1}$$

The claim holds. Inductive Step We will assume t

We will assume the claim is true for some $n \in \mathbb{N}$. Note that:

$$\begin{split} (a+b)^n &= \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \\ (a+b) \times (a+b)^n &= (a+b) \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \\ (a+b)^{n+1} &= a \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} + b \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \\ (a+b)^{n+1} &= \sum_{k=0}^n \binom{n}{k} a^{k+1} b^{n-k} \\ &+ \sum_{k=0}^n \binom{n}{k} a^k b^{(n+1)-k} \\ (a+b)^{n+1} &= \sum_{k=1}^{n+1} \binom{n}{k-1} a^k b^{n-(k-1)} \\ &+ \sum_{k=0}^n \binom{n}{k} a^{k} b^{(n+1)-k} \\ (a+b)^{n+1} &= \binom{n}{n} a^{n+1} b^0 + \sum_{k=1}^n \binom{n}{k-1} a^k b^{n-(k-1)} \\ &+ \binom{n}{0} a^0 b^{n+1} + \sum_{k=1}^n \binom{n}{k} a^k b^{(n+1)-k} \\ (a+b)^{n+1} &= a^{n+1} + b^{n+1} \\ &+ \sum_{k=1}^n \left[\binom{n}{k-1} a^k b^{n-(k-1)} + \binom{n}{k} a^k b^{(n+1)-k} \right] \\ (a+b)^{n+1} &= a^{n+1} + b^{n+1} \\ &+ \sum_{k=1}^n \left[\binom{n}{k-1} + \binom{n}{k} \right] a^k b^{(n+1)-k} \\ (a+b)^{n+1} &= a^{n+1} + b^{n+1} \\ &+ \sum_{k=1}^n \binom{n+1}{k} a^k b^{(n+1)-k} \\ (a+b)^{n+1} &= a^{n+1} + b^{n+1} \\ &+ \sum_{k=1}^n \binom{n+1}{k} a^k b^{(n+1)-k} \\ (a+b)^{n+1} &= \sum_{k=1}^{n+1} \binom{n+1}{k} a^k b^{(n+1)-k} \end{split}$$

It follows that the claim holds for n + 1 as well. By PMI, the claim holds for all $n \in \mathbb{N}$.

EXERCISE

Theorem 19. If $r \neq 1$, then for all $n \in \mathbb{N}$:

$$\sum_{k=0}^{n-1} r^k = \frac{1-r^n}{1-r}.$$

Proof. We will use the Principle of Mathematical Induction.

Base Case MISSING STEP Inductive Step We will assume the claim is true for some $n \in \mathbb{N}$. Note that:

$$\sum_{k=0}^{n-1} r^k = \frac{1-r^n}{1-r}$$
$$\sum_{k=0}^{n-1} r^k + r^n = \frac{1-r^n}{1-r} + r^n$$
$$\frac{\text{MISSING STEP}}{\sum_{k=0}^{(n+1)-1} r^k} = \frac{1-r^{n+1}}{1-r}$$

It follows that the claim holds for n + 1 as well. By PMI, the claim holds for all $n \in \mathbb{N}$.