
Mathematical Induction
Samuel Li

Notation

Statements

We use Pn to denote a statement. The statement should depend on n to
avoid wasting the valuable subscript. For example, if we define:

Pn
..= There are n lights.

Then, we would have:

P2 = There are 2 lights.

P7 = There are 7 lights.

P126 = There are 126 lights.

For another example, if we define:

Pn
..= n2 + n is even.

Then, we would have:

P1 = 12 + 1 is even.

P8 = 82 + 8 is even.

P911 = 9112 + 911 is even.

Inductive Claims

We use In to denote an inductive claim. An inductive claim In says that if
Pn is true, then Pn+1 must be true. In other words, we define:

In ..= (Pn =⇒ Pn+1).

For example, suppose we define:

Pn
..= n3 is prime.

Then, we would have:

I2 = If 23 is prime, then 33 is prime.

I12 = If 123 is prime, then 133 is prime.

I42 = If 423 is prime, then 423 is prime.

The Principle of Mathematical

Induction

The Principle of Mathematical Induction (PMI) says that if P1 is true, and
In is true for all natural numbers n, then Pn is true for all natural numbers
n. In other words, we have that:

[P1 and (In for all n ∈ N)] =⇒ (Pn for all n ∈ N)

Or, more succinctly,

P1 ∧ (In∀n ∈ N) =⇒ (Pn∀n ∈ N)

To see why this is true, let us consider:

Pn
..= n > 0

v The PMI requires that we have P1. In other words, we must assume
that 1 > 0.

v We also assume that we have proved I1. In other words, we have that
if 1 > 0, then 2 > 0.

v Clearly, it follows that 2 > 0. In other words, we have proved P2 from
P1 and I1.

We can repeat this reasoning for P2 and I2 to obtain P3, and so on.

The statement P1 is called the base case, and proving the inductive claim In
for all n ∈ N is called the inductive step.

Examples

Sums of Odd Numbers

Note that:

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 11 = 25

...

It appears that the sum of the first n odd numbers is equal to n2. We want
to prove this.
Theorem 1. The sum of the first n odd numbers is equal to n2 for all n ∈ N.

Proof. ??????????????????????????? �

We will prove this by induction; however, we must first formalize the problem.
We do this by defining:

Pn
..= The sum of the first n odd numbers is equal to n2.

The problem has now been transformed into proving Pn for all n ∈ N.
Theorem 2. Pn is true for all n ∈ N.

Proof. ??????????????????????????? �

This presentation is on induction, so we will clearly use induction to prove
Pn. The PMI says that we only need to prove P1 and In.
Lemma 3. P1 is true.

Proof. Substituting n = 1 into the definition of P1 yields:

P1 = The sum of the first 1 odd numbers is equal to 12.

In other words,
P1 = The first odd number is 1.

This is true by the “duh of course” principle. �

We have proved that P1 is true. We now need to prove that In is true for
any n.
Lemma 4. In is true for all n ∈ N.

Proof. ??????????????????????????? �

It might help to substitute the definitions of In and Pn:
Lemma 5. If the sum of the first n odd numbers is n2, then the sum of the
first n + 1 odd numbers is (n + 1)2.

Proof. ??????????????????????????? �

It might also help to actually know what the first n odd numbers are. The
first odd number is 1× 2− 1 = 1. The second odd number is 2× 2− 1 = 3.
The third odd number is 3× 2− 1 = 5. It appears that the nth odd number
is 2n− 1. We can prove this by induction but I’m too lazy. It follows that
the sum of the first n odd numbers is the sum of the numbers 2k − 1, where
k goes from 1 to n.
Lemma 6. If the sum of the numbers 2k − 1, where k goes from 1 to n, is
n2, then the sum of the numbers 2k − 1, where k goes from 1 to n + 1, is
(n + 1)2.

Proof. ??????????????????????????? �

This is too wordy, so let’s use more symbols.
Lemma 7. If

n∑
k=1

(2k − 1) = n2,

then
n+1∑
k=1

(2k − 1) = (n + 1)2

Proof. ??????????????????????????? �

We’re getting somewhere (hopefully). Actually, why don’t we try to prove it
now (maybe?).
Lemma 8. If

n∑
k=1

(2k − 1) = n2,

then
n+1∑
k=1

(2k − 1) = (n + 1)2

Proof. We know that:
n∑

k=1

(2k − 1) = n2.

We want to end up with
∑n+1

k=1(2k− 1) on the left. This is the same sum but
with a 2(n + 1)− 1 added. Let’s add 2(n + 1)− 1 to both sides.

n∑
k=1

(2k − 1) = n2

n∑
k=1

(2k − 1) + 2(n + 1)− 1 = n2 + 2(n + 1)− 1

n+1∑
k=1

(2k − 1) = n2 + 2n + 2− 1

n+1∑
k=1

(2k − 1) = (n + 1)2

We got what we wanted assuming only what we were given, so I’d call that
a proof. �

We’ve managed to prove both P1 and In. PMI tells us that this proves Pn

as well, so we’re done.

Here’s the full proof, for reference.
Theorem 9. The sum of the first n odd numbers is equal to n2 for all n ∈ N.

Proof. We will use the Principle of Mathematical Induction.

Base Case The sum of the first 1 odd numbers equals 12. The claim
holds.

Inductive Step We will assume the claim is true for some n ∈ N. Note that:

n∑
k=1

(2k − 1) = n2

n∑
k=1

(2k − 1) + 2(n + 1)− 1 = n2 + 2(n + 1)− 1

n+1∑
k=1

(2k − 1) = (n + 1)2

The claim holds for n + 1 as well. By PMI, the claim holds
for all n ∈ N.

�

Exponentials versus Factorial Growth

Look at the following table:

n 2n n!

1 2 1
2 4 2
3 8 6
4 16 24
5 32 120
6 64 720
7 128 5040
8 256 40320
9 512 362880

10 1024 3628800
11 2048 39916800

It looks like n! grows faster than 2n. In particular, it appears that n! > 2n

for all n ≥ 4. We can prove this by a modified version of PMI; we will define:

Pn
..= n! > 2n

We only need to prove P4 and In for all n ≥ 4. This will show that Pn is
true for n ≥ 4.
Theorem 10. n! > 2n for all n ≥ 4.

Proof. We will use the Principle of Mathematical Induction.

Base Case We have that 4! > 24. The claim holds.

Inductive Step We will assume the claim is true for some n ≥ 4. Note that:

n! > 2n

n! (n + 1) > (n + 1)2n

(n + 1)! > (n + 1)2n

(n + 1)! > 2× 2n (since n + 1 > 2)

(n + 1)! > 2n+1

The claim holds for n + 1 as well. By PMI, the claim holds
for all n ≥ 4.

�

An alternative proof of the theorem is as follows:
Theorem 11. n! > 2n for all n ≥ 4.

Proof. We will use the Principle of Mathematical Induction.

Base Case We have that 4! > 24. The claim holds.

Inductive Step We will assume the claim is true for some n ≥ 4. Note that:

(n + 1)! = n! (n + 1) > n!× 2 > 2n × 2 = 2n+1

The claim holds for n + 1 as well. By PMI, the claim holds
for all n ≥ 4.

�

All Numbers in a List are the Same

We will prove that given any list of n numbers, all the elements of the list
are the same.
Theorem 12. In a list of n numbers, all the numbers are the same.

Proof. We will use the Principle of Mathematical Induction.

Base Case In a list with one element, all the elements in the list are
equal (since there’s only one). The claim holds.

Inductive Step We will assume the claim is true for some n ∈ N. Consider
any list of length n + 1.

5 5 5 5 5 5 5 5 5

n equal elements

n equal elements

The first n elements are all the same, by the induction hy-
pothesis. The last n elements are also all the same. We
therefore must have all n + 1 elements be the same; the
claim holds for n + 1 as well. By PMI, the claim holds for
all n ∈ N.

�

Divisibility Examples

We will show that 4n + 2 is divisible by 3 for all n ≥ 0. To formalize the
problem, we will define:

Pn
..= 4n + 2 is divisible by 3.

What “x is divisible by 3” means is that x is equal to three times an integer,
so we can rewrite Pn as follows:

Pn = (4n + 2 = 3k for some k ∈ Z).

Theorem 13. 4n + 2 is divisible by 3 for all n ≥ 0.

Proof. We will use the Principle of Mathematical Induction.

Base Case 40 + 2 = 3 is divisible by 3. The claim holds.

Inductive Step We will assume the claim is true for some n ∈ N. It follows
that 4n + 2 = 3k for some k ∈ Z. Note that:

4n + 2 = 3k

4× (4n + 2) = 4× 3k

4× 4n + 4× 2 = 12k

4n+1 + 8 = 12k

4n+1 + 2 = 12k − 6

4n+1 + 2 = 3(4k − 2)

We obtain that 4n+1 + 2 is three times an integer, so it must
be divisible by 3. It follows that the claim holds for n + 1
as well. By PMI, the claim holds for all n ≥ 0.

�

We will now present an incomplete proof for a similar fact. Should your
algebra skills be up to par, you should be able to fill in any missing steps (in
red).
Theorem 14. n3 + 2n is divisible by 3 for all n ∈ N.

Proof. We will use the Principle of Mathematical Induction.

Base Case Missing Step

Inductive Step We will assume the claim is true for some n ∈ N. It follows
that n3 + 2n = 3k for some k ∈ Z. Note that:

n3 + 2n = 3k

Missing Step

(n3 + 3n2 + 3n + 1) + (2n + 2) = 3× ???

(n + 1)3 + 2(n + 1) = 3× ???

We obtain that (n+ 1)3 + 2(n+ 1) is three times an integer,
so it must be divisible by 3. It follows that the claim holds
for n + 1 as well. By PMI, the claim holds for all n ∈ N.

�

The next example has a small caveat; instead of claiming that Pn is true for
some n onwards, we prove the statement for all odd n. We use modified PMI
with a base case of n = 1 and inductive claims of the form Pn =⇒ Pn+2.
Theorem 15. If n is odd, then (n + 2)2 − n2 is a multiple of 8.

Proof. We will use the Principle of Mathematical Induction.

Base Case (1 + 2)2 − 12 = 8 is divisible by 8, so the claim holds.

Inductive Step We will assume the claim is true for some n ∈ N. It follows
that (n + 2)2 − n2 = 8k for some k ∈ Z. Note that:

(n + 2)2 − n2 = 8k

(n + 2)2 − n2 + 2× 2(n + 2) + 22 − 4n− 4 =

8k + 2× 2(n + 2) + 22 − 4n− 4

[(n + 2)2 + 2× 2(n + 2) + 22]− (n2 + 4n + 4) = 8k + 8

[(n + 2) + 2]2 − (n + 2)2 = 8(k + 1)

We obtain that [(n+ 2) + 2]2− (n+ 2)2 is 8 times an integer,
so it must be divisible by 8. It follows that the claim holds
for n + 2 as well. By PMI, the claim holds for all odd n.

�

Checkerboard Tiling

For any n ∈ N, consider a 2n × 2n checkerboard with one of the squares
randomly removed. We will prove that it is possible to exactly cover the
board with the shape below.

Theorem 16. For any n ∈ N, it is possible to tile a 2n × 2n checkerboard
that has any square removed using only the above piece.

Proof. We will use the Principle of Mathematical Induction.

Base Case For n = 1, the checkerboard is 2× 2. Clearly, if any square
is removed, the remaining board is exactly the above shape,
and so can be covered by one piece. The claim holds.

Inductive Step We will assume the claim is true for some n ∈ N.

Consider a checkerboard of size 2n+1 × 2n+1. Divide the
checkerboard into four 2n × 2n checkerboards, as shown
below. For now, assume that the missing square is in the
upper right checkerboard; the proof is similar for any other
case.

For now, remove one square from each of the other 2n × 2n

checkerboard as shown below. These squares will be put
back later.

Note that each of the four 2n × 2n checkerboards has one
square missing. By the induction hypothesis, each of them
can be covered exactly with the pieces described. The three
squares we removed can be covered with a single additional
piece. This yields a covering of the whole board with the
L-shaped pieces.

It follows that the claim holds for n + 1 as well. By PMI,
the claim holds for all odd n.

�

Binomial Theorem

Before we prove the binomial theorem using induction, we will first prove a
small lemma:
Lemma 17. For all n, k ∈ N such that 0 ≤ k ≤ n, we have that:(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
Proof. Consider the row of n balls below. One of them is black, and the rest
are white. Clearly, there are n− 1 white balls.

Note the following:

v There are
(
n
k

)
ways to choose k of the n balls above.

v There are
(
n−1
k

)
ways to choose k of only the white balls.

v There are
(
n−1
k−1

)
ways to choose the black ball and k − 1 of the white

balls.

The only way we can choose k balls is to either choose only white ones, or
to include the black one. Therefore, it follows that:(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
�

We can now prove the binomial theorem inductively.
Theorem 18. For all n ∈ N,

(a + b)n =

n∑
k=0

(
n

k

)
akbn−k

Proof. We will use the Principle of Mathematical Induction.

Base Case For n = 1, we have that:

1∑
k=0

(
1

k

)
akb1−k =

(
1

0

)
a0b1−k +

(
1

1

)
a1b1−1

= b + a

= (a + b)1

The claim holds.

Inductive Step We will assume the claim is true for some n ∈ N.

Note that:

(a + b)n =

n∑
k=0

(
n

k

)
akbn−k

(a + b)× (a + b)n = (a + b)

n∑
k=0

(
n

k

)
akbn−k

(a + b)n+1 = a
n∑

k=0

(
n

k

)
akbn−k + b

n∑
k=0

(
n

k

)
akbn−k

(a + b)n+1 =
n∑

k=0

(
n

k

)
ak+1bn−k

+

n∑
k=0

(
n

k

)
akb(n+1)−k

(a + b)n+1 =

n+1∑
k=1

(
n

k − 1

)
akbn−(k−1)

+

n∑
k=0

(
n

k

)
akb(n+1)−k

(a + b)n+1 =

(
n

n

)
an+1b0 +

n∑
k=1

(
n

k − 1

)
akbn−(k−1)

+

(
n

0

)
a0bn+1 +

n∑
k=1

(
n

k

)
akb(n+1)−k

(a + b)n+1 = an+1 + bn+1

+
n∑

k=1

[(
n

k − 1

)
akbn−(k−1) +

(
n

k

)
akb(n+1)−k

]
(a + b)n+1 = an+1 + bn+1

+

n∑
k=1

[(
n

k − 1

)
+

(
n

k

)]
akb(n+1)−k

(a + b)n+1 = an+1 + bn+1

+

n∑
k=1

(
n + 1

k

)
akb(n+1)−k

(a + b)n+1 =

n+1∑
k=0

(
n + 1

k

)
akb(n+1)−k

It follows that the claim holds for n + 1 as well. By PMI,
the claim holds for all n ∈ N.

�

Exercise

Theorem 19. If r 6= 1, then for all n ∈ N:

n−1∑
k=0

rk =
1− rn

1− r
.

Proof. We will use the Principle of Mathematical Induction.

Base Case Missing Step

Inductive Step We will assume the claim is true for some n ∈ N. Note that:

n−1∑
k=0

rk =
1− rn

1− r

n−1∑
k=0

rk + rn =
1− rn

1− r
+ rn

Missing Step

(n+1)−1∑
k=0

rk =
1− rn+1

1− r

It follows that the claim holds for n + 1 as well. By PMI,
the claim holds for all n ∈ N.

�


